Angiotensin II-dependent hypertension requires cyclooxygenase 1-derived prostaglandin E2 and EP1 receptor signaling in the subfornical organ of the brain.
نویسندگان
چکیده
Cyclooxygenase (COX)-derived prostanoids have long been implicated in blood pressure (BP) regulation. Recently prostaglandin E(2) (PGE(2)) and its receptor EP(1) (EP(1)R) have emerged as key players in angiotensin II (Ang II)-dependent hypertension (HTN) and related end-organ damage. However, the enzymatic source of PGE(2,) that is, COX-1 or COX-2, and its site(s) of action are not known. The subfornical organ (SFO) is a key forebrain region that mediates systemic Ang II-dependent HTN via reactive oxygen species (ROS). We tested the hypothesis that cross-talk between PGE(2)/EP(1)R and ROS signaling in the SFO is required for Ang II HTN. Radiotelemetric assessment of blood pressure revealed that HTN induced by infusion of systemic "slow-pressor" doses of Ang II was abolished in mice with null mutations in EP(1)R or COX-1 but not COX-2. Slow-pressor Ang II-evoked HTN and ROS formation in the SFO were prevented when the EP(1)R antagonist SC-51089 was infused directly into brains of wild-type mice, and Ang-II-induced ROS production was blunted in cells dissociated from SFO of EP(1)R(-/-) and COX-1(-/-) but not COX-2(-/-) mice. In addition, slow-pressor Ang II infusion caused a ≈3-fold increase in PGE(2) levels in the SFO but not in other brain regions. Finally, genetic reconstitution of EP(1)R selectively in the SFO of EP(1)R-null mice was sufficient to rescue slow-pressor Ang II-elicited HTN and ROS formation in the SFO of this model. Thus, COX 1-derived PGE(2) signaling through EP(1)R in the SFO is required for the ROS-mediated HTN induced by systemic infusion of Ang II and suggests that EP(1)R in the SFO may provide a novel target for antihypertensive therapy.
منابع مشابه
Cyclooxygenase 1-derived prostaglandin E2 and EP1 receptors are required for the cerebrovascular dysfunction induced by angiotensin II.
Prostaglandin E(2) (PGE(2)) EP1 receptors (EP1Rs) may contribute to hypertension and related end-organ damage. Because of the key role of angiotensin II (Ang II) in hypertension, we investigated the role of EP1R in the cerebrovascular alterations induced by Ang II. Mice were equipped with a cranial window, and cerebral blood flow was monitored by laser-Doppler flowmetry. The attenuation in cere...
متن کاملProinflammatory cytokines upregulate sympathoexcitatory mechanisms in the subfornical organ of the rat.
Our previous work indicated that the subfornical organ (SFO) is an important brain sensor of blood-borne proinflammatory cytokines, mediating their central effects on autonomic and cardiovascular function. However, the mechanisms by which SFO mediates the central effects of circulating proinflammatory cytokines remain unclear. We hypothesized that proinflammatory cytokines act within the SFO to...
متن کاملThe prostaglandin E2 EP1 receptor mediates pain perception and regulates blood pressure.
The lipid mediator prostaglandin E2 (PGE2) has diverse biological activity in a variety of tissues. Four different receptor subtypes (EP1-4) mediate these wide-ranging effects. The EP-receptor subtypes differ in tissue distribution, ligand-binding affinity, and coupling to intracellular signaling pathways. To identify the physiological roles for one of these receptors, the EP1 receptor, we gene...
متن کاملEP1 disruption attenuates end-organ damage in a mouse model of hypertension.
Prostaglandin E(2) is a major prostanoid found in the kidney and vasculature contributing to the regulation of blood pressure. The prostaglandin E(2) receptor EP1 has been shown to contribute to hypertension by mediating angiotensin II-dependent vasoconstriction, although its precise role is incompletely characterized. Disruption of the EP1 receptor in C57BL/6J mice reduced the incidence of mor...
متن کاملEP1c times for angiotensin: EP1 receptors facilitate angiotensin II-induced vascular dysfunction.
A relatively recent concept is that vascular dysfunction plays a key role in cognitive impairment, as well as stroke. Impaired neurovascular coupling, probably in part through activation of the angiotensin II type 1 receptor, is central to cerebrovascular dysfunction.1 Reactive oxygen species clearly are important mediators of the deleterious vascular effects of angiotensin II. The evidence see...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hypertension
دوره 59 4 شماره
صفحات -
تاریخ انتشار 2012